Relation between Hénon maps with biholomorphic escaping sets

نویسندگان

چکیده

Let H and F be two Hénon maps with biholomorphically equivalent escaping sets, then there exist affine automorphisms $$A_1$$ $$A_2$$ in $${\mathbb {C}}^2$$ such that $$\begin{aligned} F=A_1\circ \circ A_2 \end{aligned}$$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biholomorphic Maps between Teichmüller Spaces

In this paper we study biholomorphic maps between Teichmüller spaces and the induced linear isometries between the corresponding tangent spaces. The first main result in this paper is the following classification theorem. If M and N are two Riemann surfaces that are not of exceptional type, and if there exists a biholomorphic map between the corresponding Teichmüller spaces Teich(M) and Teich(N...

متن کامل

Connected Escaping Sets of Exponential Maps

We show that, for many parameters a ∈ C, the set I(fa) of points that converge to infinity under iteration of the exponential map fa(z) = e + a is connected. This includes all parameters for which the singular value a escapes to infinity under iteration of fa.

متن کامل

Reversible Complex Hénon Maps

We identify and investigate a class of complex Hénon maps H : C2 → C2 that are reversible, that is, each H can be factorized as RU where R2 = U2 = IdC2 . Fixed points and periodic points of order two are classified in terms of symmetry, with respect to R or U , and as either elliptic or saddle points. Orbits are investigated using a Java applet which is provided as an electronic appendix.

متن کامل

Topological Dynamics of Exponential Maps on Their Escaping Sets

For the family of exponential maps Eκ(z) = exp(z)+κ, we prove an analog of Böttcher’s theorem by showing that any two exponential maps Eκ1 and Eκ2 are conjugate on suitable subsets of their escaping sets, and this conjugacy is quasiconformal. Furthermore, we prove that any two attracting and parabolic exponential maps are conjugate on their sets of escaping points; in fact, we construct an anal...

متن کامل

Escaping orbits in trace maps

We study the finitely-generated group A of invertible polynomial mappings from @ to itself (or Iw3 to itself) which preserve the Fricke-Vogt invariant 1(x, y, z) = x2 + y* + z* 2xyz 1. Using properties of suitably-chosen generators, we give a necessary condition and sufficient conditions for infinite order elements of A to have an unbounded orbit escaping to infinity in forward or backward time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2023

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-023-02630-w